
Recitation Guide June 20, 2007 

1. Quiz 2 

a. Comments? 

2. Comprehensive Review Session 

a. Review session in the works 

b. Take the survey to give us some idea of what to go over : 

http://www.surveymonkey.com/s.aspx?sm=cVsg_2b5jauLXDm3tFMeFB9A_3d_3d 

3. Homework 6 

a. Due Monday June 25 at 11:45pm with a grace period until June 26 at 7:00am 

b. PAIR PROGRAMMING AGREEMENTS DUE TODAY! 

i. Those without partners need to contact a TA or Professor Potts right away. 

c. Any Questions? (rehash material from last recitation if necessary) 

4. Abstract data structures: Stacks and Queues 

a. Stack     →←|data| 

i. A list where removal and addition occur at the same end (usually the head). 

Frequently known a LIFO (Last-In-First-Out) structure. 

ii. A good example in real life is a stack of trays in a cafeteria.   

iii. Stack methods (assuming we insert and remove at the head) 

1. push(anObject) – Adds a new object onto the top of the stack 

2. pop() –  Removes the top (head) object off the stack. 

3. peek() – Gets the top of the stack, but does not remove it from the 

stack. 

4. size() – Return the size(aka the length) of the stack  

b. Queue   ←|data|← 

i. Pronounced “Q,” a list where removal occurs at one end (usually the head) and 

addition occurs at the other end (usually the tail). Frequently known a FIFO 

(First-In-First-Out) structure.  

ii. A good example in real life is a line at a movie theatre.  

iii. Queue methods (assuming we insert at the end and remove from the head) 

1. enqueue(anObject)  - Adds a new object at the end of the queue. 

Pronounced “en-q.” 

2. dequeue()  –  Removes an object from the head. Pronounced “de-q.” 

3. size() – Return the size(aka the length) of the stack 

c. Stacks and Queues in action 

i. Stack 

1. push 

Data:  1 2 3 4 

Original Stack:   →←|9  10| 

a. push( 1): no return  

→←|1  9  10| 

http://www.surveymonkey.com/s.aspx?sm=cVsg_2b5jauLXDm3tFMeFB9A_3d_3d


b. push(2):  no return  

→←|2  1 9  10| 

c. push (3):  no return  

→←|3  2  1 9  10| 

d. push(4): no return 

 →←|4  3  2  1 9  10| 

2. pop 

Original Stack:   →←|4  3  2  1 9  10| 

a. pop() : returns 4  

→←| 3  2  1 9  10| 

b. pop() : returns 3  

→←| 2  1 9  10| 

c. pop() : returns 2  

→←| 1 9  10| 

d. pop() : returns 1  

→←| 9  10| 

e. pop() :  returns 9 

→←| 10| 

f. pop() :  returns 10 

→←| | 

ii. Queue 

1. enqueue 

data: 1 2 3 4 

original queue: ←|9  10|← 

a. enqueue(1) : no return 

←|9  10  1|← 

b. enqueue(2) : no return 

←|9  10  1  2|← 

c. enqueue(3) : no return 

←|9  10  1  2  3|← 

d. enqueue(4) : no return 

←|9  10  1  2  3  4|← 

2. dequeue 

original queue:  ←|9  10  1  2  3  4|← 

a. dequeue(): returns 9 

←| 10  1  2  3  4|← 

b. dequeue(): returns 10 

←| 1  2  3  4|← 

c. dequeue(): returns 1 

←| 2  3  4|← 

d. dequeue(): returns 2 

←| 3  4|← 



e. dequeue(): returns 3 

←| 4|← 

f. dequeue(): returns 4 

←| |←  

d. Big O – a measure of efficiency commonly used in computer science 

i. Why would a stack be good to use for reverse method? Think about how stacks 

remove and how they insert new data. 

ii. Conventional reverse method: O(n*(3n))=O(n2). 

 See intro-to-stack.ppt p16.  

iii. New reverse method using a stack: O(2*n) => O(n) . 

See intro-to-stack.ppt p20. 

e. Abstract data type (ADT) - An abstract type is a description of the methods that a data 

structure knows and what the methods do. 

f. We can actually write programs that use the abstract data type without specifying the 

implementation.  For example: 

public void push(Object element){ 

    elements.addFirst(element); 

  } 

Because every class in Java extends Object in some way or another, instances of classes 

are always Objects (Hence Java is considered an object-oriented language). Thus this 

stack may contain any Object. Remember that int, double, etc are considered primitives 

and are not Objects, but there are ways around this limitation by using the Integer, 

Double, etc classes available in Java.   

 

 


